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Synopsis
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radiation damage, and the crystal volume needetbliect diffraction data to a given

resolution calculated.
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Abstract

In this work, classic intensity formulae were uditgith an empirical spot fading
model to calculate the diameter of a sphericaltatybat will scatter a desired number of
photons per spot at a desired resolution overadtimtion damage-limited lifetime. The
influences of molecular weight, solvent content|36t B factor, X-ray wavelength and

attenuation on scattering power and dose weracllided. Taking the net photon count



in a spot as the only source of noise, a complate set to 2 A resolution was predicted
to be attainable from a perfect lysozyme crystakese 1.2 micrometers in diameter and
two different models of photoelectron escape redubes to 0.5 or 0.34 micrometer.
These represent 15 to 700 fold less scattering pthaa the smallest experimentally-
determined crystal size to date, but the gap wawsho be consistent with the
background scattering level of the relevant expenitn These results suggest that
reduction of background photons and diffractiont§ize on the detector are the

principal paths to improving crystallographic dgtality beyond current limits.

1. Introduction

The last 15 years have seen many experimentalasss of how small a protein
crystal can be and still yield a complete datgGenzalez & Nave, 1994; Glaesstral,
2000; Teng & Moffat, 2000, 2002; Faccicdti al, 2003; Slizet al, 2003; Liet al, 2004;
Nelsonet al, 2005; Sawayat al, 2007; Coulibalyet al, 2007; Standfusst al, 2007;
Moukhametzianoet al, 2008; reviewed by Holton, 2009), and this size Ibeen
decreasing as technology improves. But is théhearetical limit? The work presented
here establishes a firm theoretical framework famputing the absolute signal available
from very small macromolecular crystals, and ewdfgrt is made to explicitly and
unambiguously spell out the definitions and defovag. The International Tables for
Crystallography (Wilson & Prince, 1999) containsgnof the critical pieces of the
puzzle assembled here, and the original referesreespread out over nearly a century of

literature.



Here we endeavor to keep the theory general argpardient of the limitations of
current diffraction hardware. For example, thestinonored practice of recording the
three-dimensional diffraction pattern on as fewgesas possible was not simply an
effort to save money on film, but to minimize nois&insic to the detection process such
as “fog” on film or the read-out circuit of a chaycoupled device (CCD). Counting
detectors such as multi-wire (Cogkal, 1974) and pixel arrays (Kradt al, 2009) do
not have this kind of noise, and the optimal datéection strategy with these detectors is
different (Xuonget al, 1985; Belrhalet al, 2007). For simplicity in the present work,
we considered the X-ray detector and indeed theeatiiffractometer to be an ideal
device: subject only to the shot noise of the pet photons themselves (the square root
of the number of counts). All other sources ofseancluding background scattering
were neglected until 83.2.

The formula for the integrated intensity of a spas introduced by Darwin
(1914), but much subsequent work was requiredltout the original theory. For
example, Darwin’s variable “f” required the deveatognt of quantum theory to explain
its observed value (Debye, 1915; 1988). The regytirbital shapes (Slater, 1929) led
directly to the cross sections needed to compwterabon effects in the 1960s, and
steady improvements continue to this day (HubRel6). Only recently has it become
clearly established that radiation damage at cnyisgemperatures is proportional to
dose (Henderson, 1990; Gonzalez & Nave, 1994; étatsal, 2000; Slizet al, 2003;
Leiroset al, 2006; Oweret al, 2006; Garman & McSweeney, 2006; Garman & Nave,

2009; Holton, 2009), and this understanding enathlegresent work.



The intensity of a Bragg spot is not simply theaguof the structure factor but
depends on several other factors including expasues crystal volume and the
geometry of diffraction. Consequently, the absointensity of a spot in photons (which
determines the maximum possible signal-to-noide)rdepends on exactly where the
spot falls on the detector surface. Algorithmsdomputing these intensity “correction”
factors are encoded into most data processing @mugyrbut the source codes are not
always available and in many cases the implemesagéctions apply only to particular
camera geometries. Therefore, the reproducilaliy generality of the results presented
here requires a clear description of each cornedtiotor, and we begin by defining the

relevant coordinate system.

2. Methods

2.1 Coordinate system

There are many possible ways to assignzcoordinates to a diffractometer and
unfortunately most of them have been employed attiome or another and few data
processing programs share exactly the same coowenitlere we will adopt a “classic”
coordinate system essentially identical to thatdeed in Arndt and Wonacott (1977)
chapter 7 which is also the coordinate system bygdtle data processing program
MOSFLM (Leslie, 2006). In this systemis the direction of the X-ray beamis the
(horizontal) spindle axis andis “up” (opposing gravity), or perpendicular tetpage in

Fig. 1.



2.2 Spot Intensity

Typically, crystallographic data processing anddsloefinement programs
assign an arbitrary “scale factor” for the obserspdt intensities to put them on the same
scale as the structure factors calculated frormtbéel, but the exact relationship
between the intensity of a fully-recorded spot #ralsquare of the structure factor is
given by Darwin’s formula (Darwin, 1914, 1922; Btell & Johnson, 1976), and

instructive re-derivations can be found in textb®bly James (1962) and Woolfson

(1997).
3
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where:

I - integrated spot intensity (photons/spot)

lheam - intensity of the incident beam (photons/&/m

le - classical electron radius (2.818 x*®@n/electron)

Vitar - illuminated volume of the crystal (in39n

Ve - volume of the crystal unit cell (in3n

A - X-ray wavelength (in m)

) - angular velocity of the crystal (radians/s, §2.8

L - Lorentz factor (speed/speed, §2.3)

P - polarization factor (photons/photons, §2.4)

A - X-ray transmittance of the path through the @iy the spot (photons/photons,
§2.5)

F - structure factor of the unit cell at the relpmterest (electron equivalents, 82.7)

The abbreviation “relp” is used to denote a patécpoint in reciprocal space,
distinct from its symmetry mates (Ramachandran &o%fer, 1951; Helliwell, 1999), and

here we use “spot” to refer to a single observatiba relp and “hkl” to indicate the sum



of all symmetry-equivalent spots. Note that alhqities entered into Equation (1) are in
meter-kilogram-second (MKS) units, including theay wavelength/), and that the

units of “intensity” for spots (photons/spot) a@ the same as for the incident beam
(photons/s/) nor classical electron scattering (photons/stargd Despite this, all of
these quantities remain commonly referred to aefisity”, leading to a considerable
amount of confusion if the units are not given &ifly. The change of units arises
because the full spot intensity (photons/spothbisimed by integrating over the relp as it
moves through the Ewald sphere (Ewald, 1913; Aéndtonacott, 1977; Helliwell,

1999) and therefore several geometric factors ieisaken into account.

Experimental confirmation of Darwin’s formula wasepented by Moseley &
Darwin (1913), Brag@t al.(1921a; 1921b; 1922), Compton & Freeman (1922) and
many others since. For an example calculationguSgjuation (1), consider a 10t
diameter spherical protein crystal with all thrext gell edges 50 A long. Assume that
for a particular relp at 2 A resolution we hadve 170 electron equivalents (see §2.7) and
further assume some crystal orientation that assign2.2,P = 0.92, andA = 96% to
this relp (see 82.3, 82.4 and 82.5, respectivdlyihe crystal rotates at 1°/s in a uniform
beam of 1 A X-rays with I8 ph/s passing into the 1Q®n diameter circular cross
section of the crystal, then Equation (1) predastsntegrated full spot intensity of 27,251
photons. This calculation was found to be in rdwlble agreement with experimentally
observed spot intensities from a lysozyme crystat §hown) at the protein
crystallography beamline 8.3.1 at the Advanced Ligurce (instrument described by

MacDowellet al, 2004). OncéyeamWwas calibrated (Oweet al, 2009), the discrepancy



between calculation and experiment was essentladlyincertainty in our visual estimate
of Vyia (@bout 15%).

The flux densityyeamiS a constant in Equation (1), which implies ttnet crystal
is “bathed” in a “flat top” or “top hat” beam. Re&ray beams are seldom this perfect,
but any crystal in any beam may be formally brolgpnnto tiny cubes small enough for
IheamtO be considered constant over each cube andtdiespot intensity obtained by
summing the results of Equation (1) for all theesibHowever, ifpeamis the same for
every cube there is clearly no need to break ugnystal, and conversely if the crystal
has constant thickness along the beam directien, e average flux density
experienced by the crystal (regardless of beameghapy be used dgamin Equation
(2). Only if both the crystal shape and the beanfilp have irregular shapes does
Equation (1) need to be integrated over the bearfilgpand crystal volume. However,
we show in 82.11 and Appendix C (supplemental) ttetdamage-limited spot intensity
is independent dteam Obviating the need to consider beam and cryktgbess, so for
simplicity in this work we will consider a sphericaystal “bathed” in a top-hat beam.

Note that Equation (1) does not depend on the rass$aicture of the crystal, and
indeed a crystal consisting of a single mosaic dormmathousands of mosaic domains
will still yield exactly the same integrated spatensity (), as long as the mosaic
domains are small when compared with the attenualiépth (%) of the X-rays in the
crystal. This depth is typically several mm fol X-rays (see the end of §2.5), and
protein crystals this large are very rare, let aleimgle-domain crystals (Snell al,
2003). A common misconception that protein micystals consisting of a single mosaic

domain will produce more intense spots than expetten Darwin’s formula seems to



have arisen from the above-mentioned confusion theeseveral possible meanings of
the word of “intensity” (discussed further undergBelow). In truth, however, Equation
(1) was derived for small and single-domain crystahd also applies to the “ideally
imperfect” case of a large crystal with many moskmains (Darwin, 1922). Large
single-domain crystals that approach the lengtlesafahe attenuation depth of the X-
rays actually produce weaker spots than predicgdéiduation (1), due to extinction

effects (James, 1962; Woolfson, 1997; Sabine, 188fhier, 2004).

2.3 Lorentz factor

The Lorentz factokL in Equation (1) is always greater than one anblagatio of
the speed of a rotating relp to the “penetratiages at which it transits the Ewald
sphere (Fig. 1). This Lorentz factor in crystatipghy is not to be confused with its
inverse, the Lorentz correctiar which data processing programs such as MOSFLM
(Leslie, 2006) use to “correct” for this effect multiplying observed integrated
intensities by . The description of the Lorentz factor in thesmmiational Tables
(Lipson & Langford, 1999) notes that some confugias arisen over the definition of
the Lorentz factor because Lorentz never publishelhstead, it seems he wrote a letter
to Debye who included it as a second note addedoof (Debye, 1914; 1988).

Essentially, the Lorentz factor accounts for how ititegrated intensity
(photons/spot) of a relp will be higher if it movaswly through the Bragg condition

than if it moves quickly. Indeed, the angular wéipof the crystal &), divided by the

! Note that there is also a “Lorentz factor” in feeory of Relativity, which has nothing to do witte
Lorentz factor in crystallography, other than shgithe same namesake.



Lorentz factor ) is the angular velocity of the relp as “seen’hfirthe origin (see Fig. 1).
This geometric correction is therefore grouped witier geometric factors in Equation
(1) such a%. The cube of the wavelengttfand one of the unit cell volum¥y)

terms are also geometric corrections since thesgaolved in the size of the integration
volume in reciprocal space (Woolfson, 1997 Ch. 6).

It is instructive to consider the relationship beén the Lorentz factor and the
spot position on the detector. This will obvioudbpend on the camera geometry, but in
the common case where the crystal rotation aypeipendicular to the X-ray beam, the
Lorentz factor ) is given by:

1
\sin® 20 - ¢?

(2b) ¢, = coSs B ZjelXstf

(2a) L=

where:

% - Bragg Angle

¢ - 2d*-z normalized projection of the relp vector onto tb&tion axis %)

¢ - {'in terms of spot coordinates on a flat detectonad to the incident beam
Z4et - coordinate of the diffraction spot on the deteetlong the axis parallel to the

rotation axis (relative to beam center in mm)

Xstt - sample-to-detector distance along direct beatim (@@ mm)

The Bragg anglé is defined as half of the angle between the dibeaim path
and the diffracted ray (see Fig. 1). Any given redm be represented as a vedtothat
will always have lengthl* = 1/d whered is the d-spacing (in A) of the spot. No matter
how the crystal is rotated, the d-spacing of a sjpets not change. The polar coordinate

{ (Helliwell, 1999) is calculated by taking tkecomponent ofl* (zis the unit vector



along thez-axis) and multiplying it by the X-ray wavelengtlgin A). This is because the
z-component ofl* has dimensions of A and¢ must be dimensionless to be
meaningfully related to séh

In the also common case where the detector ig pllae and normal to the

incident X-ray beand may be conveniently replaced wifhfrom Equation (2b).
However, moving the detector does not changé a given relp and, serves simply as a

convenient way to map the Lorentz factor onto tbeector face. For arbitrary detector
positions{ must be computed from the spindle geometry, ariddrgeneral case of the
beam not perfectly normal to the rotation akisnust be calculated by taking the
projection of the relp velocity vector along théfrdicted ray (as shown in Fig. 1).

Arbitrary rotations of the crystal will rotatbe vectod* by exactly the same
angles, and if the crystal is oriented such thfaapproaches the spindle axzsakis), it
will eventually cross into a “blind region” (Arndt Wonacott, 1977; Helliwell, 1999)
where spindle rotation alone cannot bring the oglfo the Ewald sphere. As the relp
approaches this blind region the denominator ofdiqn (2a) becomes smaller and
smaller and the Lorentz factor approaches infinffyossing into the blind region, the
guantity under the square root in Equation (2apbegs zero or less and the Lorentz
factor becomes undefined.

It is important to note however that an infinitereotz factor does not actually
imply an infinite spot intensity. This is becauke relps are not infinitely sharp points,
but rather do occupy a volume in reciprocal spheghust pass completely through the
Ewald sphere for Equation (1) to be valid. In fdloe size and shape of this reciprocal-

space volume is simply the Fourier transform ofdize and shape of the mosaic domain

10



producing it, but a detailed discussion of spopsisas beyond the scope of this work. It
will suffice here to say that the blind region ffeetively enlarged by an angle
comparable to the crystal mosaic spread, “swallgivhe infinite Lorentz factors. The
few spots that are close to the rotation axis wdkeed have very large Lorentz factors,
but also a very wide angular range of reflectimcking width), so, on a typical
diffraction image, these high-spots are roughly the same intensity (photons)ssoany

other. A discussion of rotation range will conénn 82.8.

2.4 Polarization factor

The polarization factoP is always less than one and accounts for losses of
scattering efficiency when the incident and scattdyream polarization vectors do not
line up. That is, the E-vector of any electromadgneave must always be perpendicular
to the direction of travel (Maxwell, 1865; Purcdlf85), but this changes upon
scattering. First described for X-rays by Azaid®55) and re-formulated for
synchrotron radiation by Kahet. al.(1982), we use here the convenient expressiomgive
by Drenth (1999):

(3) 2P =1+cod20-F cos 2 sinf20

where:

P - polarization factor used in Equation (1) (phat@motons)

% - Bragg angle

o - angle between the projections of #exis and diffracted ray onto a plane

normal to the incident beam

S - degree of polarization

11



Note that the polarization factBrvaries from spot to spot wheregss the
“polarization” entered into most diffraction dateopessing programssg ranges from 1 to

0 to -1 as the beam polarization varies from “hamial” (along thez axis) to unpolarized
to “vertical” respectively. The “plane normal teetincident beam” invoked to define
here is any plane parallel to both thendz axes (see in Fig. 1 as well as Arndt &
Wonacott (1977)) .

Many synchrotron-based diffractometers are desigvigdhorizontal spindle
axes (as defined here) because in this geometstittieg horizontal polarization of

synchrotron radiationi close to 1) tends to cancel the Lorentz factortaed'hole” in

scattering due to polarization &t 2 90° andu = 0 coincides with the blind region (82.3).

However, the average value of the produeis independent d§, (see §2.6) and

therefore spindle orientation has no effect on agelintensity (photons/spot) in a given
resolution bin. The only practical concern is thmany data processing programs throw
out spots with largé because such spots are very sensitive to smatkdrr crystal

orientation, but even whdn> 5 spots are rejected, the “penalty” of a veftsgandle §

=-1) in the 2 A bin using 1 A radiation is only%Qnot shown). Indeed, for such d&a
ranges from 1 to 0.77 and this variation diministuether as the pattern is compressed
into lower angles at shorter wavelengths becausatitm (3) depends purely on the
geometry of the camera and not on the X-ray wagghensed. The mechanical stability
advantages of a vertical spindle for small crysta¢sefore come at only a marginal cost

to photons/spot.

12



2.5 Sample attenuation

The attenuation factdk in Equation (1) is an average optical transmittaaied is
always less than one. For full accuracy photoosifeach point in the X-ray source must
be ray-traced to every accessible part of the arysiume and from there out into the
spot. The transmittance along each path depentsemize, shape and atomic
composition of the crystal and any other substaitdesverses (including air). The
profile of the beam acts as a “weighting functiamtlA is the average transmittance over
all possible paths. Given the potential complerityhe shapes involved, the only general

expression foA is the triple integral:

(4)
1

A = V | IIII prof (y!Z) exp(_tuairtair (X!yiz - ﬂxtaltxtal (X!yiz - ﬂlooptloop(xiyiz - )dXdde

xtal " beam xtal

Where:

A - attenuation factor (photons/photons)

Vi - volume of the crystal (f

lbeam - total intensity of the incident beam (photons//

lorof - intensity of the beam profile at the coordindggz (photons/s/i)

Lix - attenuation coefficient of substancesX: is the attenuation length (m)
tx - component of total path taken by X-ray throughstance x, via crystal
coordinatex,y,z(m)

The complexity arises because the scattering dadustion processes must be
co-integrated over the illuminated volume of thestal (). The path taken by the
incident beam is only important up to the pointloen of the “scattering event” and
from there the materials between the scatteringtesad the location of the diffraction

spot must be considered. This integral can besglohnalytically for the simple case of a

13



flat slab-shaped crystal with unifopm and the formula of this solution is presented in
the International Tables (Maslen, 1999). Howef@ranything other than a flat slab

there is no analytic solution for Equation (4), @awen a perfect sphere must be evaluated
numerically. Nevertheless, the sphere is a comveriaverage shape” for a protein

crystal and look-up tables are available for thiggral (Dwiggins, 1975; Flack &

Vincent, 1978; Maslen, 1999). For the calculabiand, we consider a spherical

crystal of radiu®k with uniform attenuation coefficieps in a uniform “flat top” beam

and denote the total transmission of a beam diffrgat angle 2 simply as:

(5) A= Tspnerk20 pixiaR)

where:

A - attenuation factor (photons/photons)

Tsphere - NUMerical solution to Equation (4) for a sphiera vacuum
20 - angle between incident and diffracted beams

Uxtal - attenuation coefficient of the crystal tin

R - radius of the spherical crystal (m)

The value of: for each substance is obtained using its densjtsr(d the
tabulated X-ray cross sections (Storm & Israel, @t Berger & Hubbell, 1987; Creagh &
Helliwell, 1999) of the chemical elements comprisin(reviewed by Hubbell, 2006). A
convenient program for accurate calculation &r a particular protein crystal is
RADDOSE (Murrayet al, 2004; Paithankaet al, 2009), and for the calculations
presented here we use an average empirical forfoupaotein: Hyg ¢Cs1.dNs.5609.5580.249
determined from a survey (not shown) of the ProBata Bank (Bermant al, 2002).
Taking 1 A X-rays for example, values foin protein, water, and 50% solvent protein

crystal used in this work are 2.78, 2.85 and 2181 tespectively. This yields an

14



attenuation depthy.* = 3.6 mm, so a 2.5 mm thick protein crystal isuieep to reduce
a spot intensity (photons/spot) by half, and a @®@0crystal reduces no spot intensity by
more than ~2.7%. Therefokeis a small correction in typical cases, and omgdimes
significant if strongly absorbing atoms are soaked the crystal (see Holton, 2009), or
if long wavelength X-rays are used. For exampi¢ha sulfur K edge (5 A wavelength),
uxal -~ 32 um and attenuation can reduce the spot intensities & 10Qum crystal by as

much as 96%A = 0.04).

2.6 Average Lorentz-polarization factor and completness

Since we are concerned here with the average whlaspot intensity
(photons/spot) at a given resolution, we must kiteevaverage value of the product of
the Lorentz and polarization factotsR). It is also important to account for relps tfedt
into the “blind region” (82.3) as these will notmtdbute to the merged signal of an hkl
index at one wavelength, but may contribute atlarot The fraction of all relps in a
given resolution bin that can be observed by nogasibout a single axisoff) is simply
co9 (see Appendix A, supplemental), and if we avethgeoroduct of Equations (2a)
and (3) for these accessible relps (Appendix Bpkipental) we obtain the exact

expressions:

(6a) <LP>:£( 1 sinzej

2lsin2g 2

Lp\t _ (3+cos40)

(60)  (LP)foss 16 sing
where:
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fons - fraction of relps at this resolution that witbss the Ewald sphere using a single
axis (co9)

% - the Bragg angle

Note the use of angle brackétto denote average values, and th&t and f,s depend

only on the Bragg angl#), and thus are independent of waveleng}ra(id the degree of

polarizationg from Equation (3). However, as Bragg's law redatéo 0, (LP)fops tends

to cancel one of theterms in Equation (1), but not exactly.

2.7 Average structure factor

The “structure factor” was defined (Debye & Scheri®18; Hartree, 1925;
Coppens, 1999) as the ratio of the amplitude aflactromagnetic wave scattered by an
object of interest to that of a single classicateion (Thomson, 1906; Woolfson, 1997
Ch. 2; Masleret al, 1999a), hence Thomson'’s classical electron @eston () is
included in Equation (1). Thein Equation (1) is the structure factor of onet weil,
which must be isolated in space for the intengityofons/steradian) to be computed
directly fromF. The other terms in Equation (1) represent thie td intensity scattered
from a single unit cell to that of the entire cajst

The apparent amplification from oNg term in Equation (1) is effectively
cancelled by the average square structure f4E®r which is proportional t&ce; when

the number of atoms per unit volume is fixed. Tda@acellation arises because the
average scattering from a macromolecule at d-spadietter than ~4 A is essentially the

same as that of a random distribution of atomsguvij 1942, 1949; Shmueli & Wilson,
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1999), and the total structure factor of a randoraregement of atoms rapidly approaches
the structure factor of one atorfy)multiplied by the square root of the number anas.
That is, when the scattered waves from a groupashg are in no way “correlated” to
each other the total scattered intensity (photdstefsdian) is the sum of the intensities
that would be seen from individual atoms, and tiiease root of this total intensity is (by
definition) proportional to the structure factortbé group. Conversely, if the atomic
positions are perfectly correlated (such as ingalleg lattice) then the amplitudes add in a
non-random way and the intensity scattered in stineetions (diffraction spots)
becomes proportional to the square of the numbatashs. It is important to remember
that this intensity has units of photons/s/stemadihere steradians are the units of solid
angle. For example, iphotons/s emitted in completely random directiaresdescribed
by an “intensity” of 18/4x = 79577 photons/s/steradian, and a square defgig&ir100

um in size and 100 mm from the sample {&Beradian) will intercept about one photon
every 12.6 seconds. Although the intensity (phetg/steradian) scattered by a crystal of
N atoms can be very large, this is only true oveery small solid angle and as the size
of the crystal (or mosaic domain) increases thiisl @mgle becomes proportionally
smaller. In general, this patch of high intensgstynuch smaller than a pixel, but the
observed intensity (in photons) is given by thegnal of photons/s/steradian over the
entire pixel and rocking width of the relp (Woolfsd997 Ch 2 and Ch 6). The change
in units whilst using the same word “intensity” Hastorically led to some confusion, no
doubt due in part to Darwin’s formula appearing entiran half a century before the first

use of the word “pixel” in the scientific literatur
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It is instructive here to examine how the term&quation (1) interrelate as the
properties of the crystal change. For examplatass are added to random locations in
the unit cell (keepiny.e fixed for the moment) the structure factor of timt cell )
increases as the square root of the number of atothe unit cell Nee) and hence the
intensity of a fully-recorded spok, (n photons) is proportional td.;. Conversely, if
Vel is increased while keepingq, and the total number of atoms in the crystal comtst
then the number of unit cell¥a/Vcenr) decreases whillce increases. This causéso
increase as the square rooMgfy, SOF? is proportional td/ce; and the net effect of
reorganizing a fixed number of atoms into largdisas that individual spot intensities
decrease proportionally ¥.. Since the number of relps in a given volume of
reciprocal space is also proportionaMgy, the total summed intensity of all spots does
not change, and remains proportional to the nurabatoms in the X-ray beam
regardless of how these atoms are divided intoaglis. Another way to reach this same
conclusion is by the simple fact of conservatios@dttered photons: a given number of
atoms will scatter a fixed number of photons, dndgl humber is dictated by the elastic
scattering cross section of these atoms. The geraant of the atoms effects the
direction in which these photons are scatteredchnhot change their number, and in the
limiting case of very small unit cells that havenetps intersecting the Ewald sphere, all
of these photons are scattered in the forward time¢the relp with indexkl = 000).

The number of scattering atoms per unit volumeraigin crystals varies with
solvent content because the atoms of disordereésiotontribute only very weakly to

high-angle Bragg peaks (Tronrud, 1997; Afonatel, 2005; Tronrud, 2007). Therefore,
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the number of atoms contributing to spots at argiesolution beyond ~4 A can be taken

as the number of ordered (protein) atoms in theceii:

M Y/
7 N =n r— cell
( ) cell symopnASU <Ma> VM <Ma>
Where:
Neen - total number of ordered atoms in the unit eltluding hydrogen)

Nsymop - NUMber of symmetry operators in the space group
Nasu - humber of protein molecules in the asymmetrit un

M; - molecular weight of the protein (Daltons or glino
(Mg - number-averaged protein atom madgNprotein ~7.13 g/mol)

Nprotein - total number of ordered atoms in the protencl(iding hydrogen)
Vel - volume of the unit cell (in A
Vu - Matthews'’s (1968) coefficient (Dalton)

Since protein consists of more than one kind ofnatihe effective per-atom structure
factor fais given by the number-weighted average of theuwsgjatructure factors of each

atom type:

(8)  Ne{f,7) ONGT” + Ny £ + N fo? + N, %
where:
{f£) - number-averaged squared atomic structure fattorotein (electrof)

Nee - number of ordered atoms of element Ee

fee - atomic structure factor of element Ee (eleceqnivalents)

In this work, atomic form factors were calculatesing the 5-Gaussian fit approximation
used by the CCP4 Suite (1994; Winn, 2003) and &édlin the International Tables of

Crystallography Vol. C (Masleet al, 1999b). Given the atomic composition of protein
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provided in 82.5, this average atomic structurediacf protein is roughly equivalent to

that of boron f, ~ 5 electrons for forward scattering). This isduese half of the atoms in

protein are hydrogen, and this brings down the remalveraged quantitieéf.?) and

(My). However, the quotierfn’/14 is at worst 14% greater th4fi?)/{M,) between 1.5

and 4 A resolution, so if 14% error is tolerablertfprotein can be considered made of an
equal mass of nitrogen.

Note that Equation (8) only applies for ~4 A resioin and better, where the
approximations of Wilson (1942, 1949) hold, andatkthat the structure factoFsandfa
depend on the d-spacing of the smht (The contribution of each atom is also modified
by an atomic B factor (Maslegt al, 1999a), identical to those listed in the Profeata
Bank (PDB) (Bermaret al, 2002). It is important to note that the B fadtothe only
model of intrinsic crystal disorder used in thisrlwoAlthough there is reason to believe
that disorder in crystals is more complicated tthas (Welberry, 2004), B factors remain
the formalism for describing disorder in crystaliaghic refinement (Tronrud, 2007;
Brunger, 2007; Murshudoet al, 1997; Murshudoet al, 1999; Winnet al, 2003; Zwart
et al, 2008). Fundamentally, Debye’s (1915) argumert thiat the effect of atomic

displacements from their ideal lattice points isndmated by the mean square atomic
displacemenu?), a result that Waller (1923; 1925) related to terafure and Ott

(1935) derived rigorously (James, 1962). B faform a resolution-dependent
“weight” for the contribution of each atom, and mswith low B factors will contribute
a larger fraction of the total scattering at higlglas than atoms with high B factors.
However, as long as the contribution of each pnoaédm is similar at a given resolution

of interest, then we may substitute the Wilson &da(Wilson, 1949; Shmueli &
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Wilson, 1999) for all the atomic Bs and arrive @femeral expression for the average

square structure factor of a unit cell:

Where:

(F? - average value of the squared structure fadttreounit cell (electrorf

Vel - volume of the unit cell (in A
Vu - Matthews’s (1968) coefficient ffDalton or A-mol/g)

(Mg - number-averaged protein atom madgNprotein ~7.1 g/mol)

{f2) - number-averaged squared atomic structure fattprotein (electrorfy

B - average (Wilson factor (&)
% - the Bragg angle
y) - X-ray wavelength (A)

Since{f, and{M,) are essentially constants for protein &gdalso has a
restricted range (Matthews, 1968; Kantardjieff &IRu2003) it is readily apparent that
substituting{F?) from Equation (9) forf]® in Equation (1) does indeed cancel one of the
1N terms. For example, Wy = 2.5 A/Da,d = 2.5 A andB = 0, Equation (9) reduces
to (F?) = 0.2 Ve That is, given two protein crystals with the saviyg (and Wilson B

factor) but one with/.¢ twice that of the other, the average spot intgrisiim the large

unit cell crystal will be half of that from the st®a unit cell crystal.

21



2.8 Exposure time and multiplicity

The exposure timg)(does not appear explicitly in Equation (1) beeaitiss
hidden in the rotation speegd= 4®/t whered® here is the rotation covered during an
exposure (in radians). What happens if the crystabt rotated during the exposure?
Does the spot intensity become infinite? Of counsie but in reality it does approach the
intensity of the incident beam as the mosaic spagguioaches zero, the mosaic domain
volume becomes large and the X-ray beam becoméscggmonochromatic and
parallel. This limiting case is routinely achiewsdh the perfect silicon crystals used in
monochromators where nearly 100% of X-rays at aelbsvavelength are reflected, a
treatment which requires the dynamical theory &falition (Authier, 2004). Equation
(1) is based on what is known as the kinematicpt@pmation to the dynamical theory
and assumes that the mosaic domains are small cedhpih the attenuation length of
the X-rays in the crystal and that the drop inrtteen beam intensity due to diffraction is
negligible, which is generally a very good assuompfor protein crystals (sgé" values
at end of §2.5).

What value then should we chooseAdr? It cannot be smaller than the mosaic
spread if we are to fully-record a spot, but simeeare interested in collecting a complete
data set we must sétb to the full rotation range of the data set and sethe total
accumulated exposure time of the datatsg}.( The average angular velocity for
recording each spot is then simply= A@/tps. Now, several spots belonging to the same
uniquehkl index may be observed in a given data set, sc@vuating must be made of
the extra signal available from merging equivalggervations. Any relp that is not in

the blind region (see §82.3) will cross the Ewalbese twice during a 360° rotation, as
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will the Friedel mate. Therefore, a crystal belomgio a space group withymep
symmetry operators will produce a total of dymopobservations of each accessible
uniquehkl index (merging Friedel mates). For simplicity, wil use 360° for41® and
multiply the single-spot intensity by<symop

s

(10) @y =—F——
! 4nsym0JDS

where:

wer - effective angular velocity for the data set (aad/s)
2r - 360°

Nsymop - NUMber of symmetry operators in the space group

tos - total accumulated exposure time of a completa get (seconds)

That is,weft is the angular velocity of a 360° data set. Ircpca a data-collection

strategy (Dauter, 1999) is often devised to takexathge of reciprocal-space symmetry
and collect a complete data set witth < 360°, but such strategies are generally planned
to finish at the end of the crystal’'s useful litBScussed in Appendix C, supplemental) so
tpsis the same. The per-image exposure time isased and this decreasesbut also
decreases the number of observationggdormally does not change. That is, a
strategized data set will contain fewer but praposlly brighter spots, and the radiation
damage-limited photon count is independent of ctibba strategy.

This does not mean data collection strategy isegsél A well designed strategy
minimizes noise accumulation and resource conswmiherent to a given set of
equipment, such as the read-out noise of a CCDarttilpe time required to collect the
data, but a discussion of these concerns is betyensgicope of this work. Here we are

interested in the absolute minimum crystal sizepegiven an ideal diffractometer, so we
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assume that the only source of noise in a spbeiphoton-counting noise (shot noise) of
the Bragg-scattered photons themselves, and @i sthurces of noise, including the

contribution of background scattering are assurodzbtnegligible.

2.9 Absorption and dose

The attenuation fact@x described in 82.5 is often incorrectly referredsoan
“absorption factor”, but attenuation refers to gverocess for removing photons from a
beam of light, including scattering. Absorptiorthe process of transferring energy from
the beam into the substance of the crystal, andrimunt of energy “deposited” into a
sample per unit mass is the dose (Gy or J/kg). niass of our spherical crystal is simply
its density ) multiplied by its volum@é/y = 4/3tR°, and the available energy is the
photon energy (§) multiplied by the number of photons that were tnabsmitted. The
latter is the number of incident photomg.{nx = R?) multiplied by the fraction:
1-TspheréOu,R) (see Equation (5)). In this way, the calculatdmlose is related to that of
the attenuation factoAj because the process of dose deposition begihsawihoton-
atom interaction, but not every interaction demo#ie full photon energy as dose. Some
photons are merely scattered, depositing little@energy, and in some cases absorbed
energy is fluoresced away (Paithankaal, 2009). Seltzer (1993) accounted for such
energy-loss mechanisms by assuming that only losveggncharged particles represent a
“deposit” of dose and tabulated the result as thesenergy absorption coefficigsat.
Operationally, calculating absorption instead ¢émtiation amounts to substituting,

for uxar IN Equation (5), which leads to:
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) D=3ttt (00,R)
where:

Den - dose in Gy (J/kg)

ge - electron charge (1.6022 x 1tu/eV)

Eon - photon energy (eV/photon)
lbeam - incident beam intensity (photons/§jm

t - exposure time (s)

p - density of sphere material (kgfior g/L)

R - radius of the sphere (m)

en - mass energy-absorption coefficient of sphereenat(m")

The subscriptén’ denotes the use of the Seltzer (1993) coefficidvte that the R

term in Equation (11) is effectively cancelled bg flsphereterm for typical wavelengths
and crystal sizes. Take for example a cube shapysthtof the same width as our
sphere, which will transmitpe= exp(z-2R), and since the limit of 1-exprasx — 0 is

X, one can see that the (1-T) term approagH#®when most of the beam is transmitted.
This is generally the case for protein crystals,vioel will keep Equation (11) in its exact
form and continue to use the spherical crystal hfmtelose and attenuation to avoid
complicating our analysis of the attenuation fa¢&ragainst resolution with the corners
of a rotating cube-shaped crystal .

If the beam profile is not flat (the constdnt,ncase assumed here and in §82.2)
then some parts of the crystal will absorb moreedban others and these high-dose
regions will “count” more in the diffraction pattethan the low-dose regions because
they experience a brighter part of the beam (semtan (1)). Formally, we may deal

with non-uniform beams as discussed in §82.2 bykangaup the crystal into tiny cubes
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that do experience a consténtnand then summing the resulting diffraction patern
(using Equation (4) to account for the attenuatibaach incident and diffracted beam).
However, we shall see in 82.11 and Appendix C (mmpental) that such a treatment is
unnecessary because the damage-limited photonpaelsipot is independent @fdm
obviating the need to integrate over the beam lgroflhat is, given a long enough
exposure time, every part of the crystal will ewedlly “burn out” and contribute
whatever it will contribute to the diffraction path. Therefore, for simplicity, we keep
the “average dose” given by Equation (11) and asstina entire crystal is “evenly

cooked” with no significant microscopic variatianthe dose across the crystal.

2.10 Photoelectron escape and the meaning of “dose”

Cowan, Nave and Hill (Nave & Hill, 2005; Cowan & g 2008) have pointed
out that as the size of a protein crys®li§ reduced, it eventually approaches the size of
a primary photoelectron tracRdg), and the electrons themselves will start to escap
When this happens, the energy “deposited” withendtystal (dose) will be less than that
predicted by Equation (11).

In general, dose calculations are not simple, dhdwagh a sphere is the simplest
possible shape, Equation (11) comes with certaieata. For example, R becomes
large compared toe; of the crystal material, then some fraction of phetons scattered
from the core will be absorbed before escapingspifeere and some of the energy
discounted to scattering by Seltzer must be addel to the dose. A similar correction

must also be made for energy assumed lost to #geree iR becomes large compared
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to en” for the energy of the fluorescent photons (Paithast al, 2009). Conversely,
asR becomes comparable Rpe the dose given by using, will be too high.

Fundamentally, the flow of energy between atteéonand radiation damage is a
shower of particles which quickly divides the eneodj the initial photon among a large
number of atoms, distributed in space. For exapgjgotoelectric absorption event
results in an excited atom and a photoelectronstgin, 1905; Hubbell, 2006), and the
excited atom then relaxes by emitting a fluorespéaton (Moseley, 1913), or more
electrons via Auger (Meitner, 1922; Auger, 1925 aster-Kronig (1935) processes
(ICRU, 1983). These particles travel some distdrefere colliding with another atom,
and this cascade continues with the number of e@toms increasing and the
magnitude of transferred energy decreasing with sabsequent collision. However,
the distribution of events is not entirely randosrtlae transfer requires an allowed
electronic transition in the material. Initiallgt high energies, the number of allowed
transitions is small (photoelectric absorption legp shells, and scattering), but the list of
possible transitions increases dramatically at feemergy. Chemical transformations
take place once the magnitude of energy transfenoaghes that of the strongest
chemical bonds in the sample (~ 1 eV or 100 kJ/nawiyl there are a very large number
of such states excited by a single X-ray photon.

Unfortunately, such a complete treatment of enélayy is not only beyond the
scope of this work, but beyond the current undaditey of radiation physics in complex
substances. For example, the available transibofigscillator strength” in pure water
between 30 and 100 eV are still poorly understégar(ettet al, 2004). Dose

calculations with particle-tracking simulation ced®ich as EGS (Nels@t al, 1985;
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Kawrakow & Rogers, 2000; Edimet al, 2008) or MCNP (Hendrickst al, 2000;
Chiavassat al, 2005; Chibani & Li, 2002) take into account catlftabulated single-
and double-differential cross sections of all knanteractions between atoms, photons
and electrons, but once a particle energy dropsabglkeV, it is considered “dose”
because this is where most of the cross sectiaatns end. This means that even
these highly sophisticated dose calculations watamatically underestimate track
lengths by the range of 1 keV electrons. Cole 9)96easured this to be ~0.061 in
collodion plastic, so MCNP will overestimate thesddo crystals on the order of 60 nm
and smaller.

Perhaps the most important caveat is that photiweteescape formally violates
the fundamental dosimetric principle of chargedipkrequilibrium (CPE) (Attix, 1986;
Moussaet al, 2006), making simulation results difficult toenpret. The concern over
violating CPE arises because more than half oéttezgy “deposited” by a photoelectron
is not in the form of ionizations, but rather chexrgeutral electronic excitations.
Significantly more energy is deposited in this nonizing form at the beginning of an
electron track than at the end (ICRU, 1983). Noldahis energy destabilizes the
molecules that receive it, but probably not inghene way as energy deposited by
ionizing interactions. Since it is not clear whidhd of energy transfer is relevant to the
fading of diffraction spots, the impact of “doseéaynwary along the track.

To date, all dose-calibrated radiation damage mreasents have been conducted
with samples larger than the relevant photoelediracks and calculated dose using
coefficients likeuen, SO we shall continue to ugg, for dose in this work, but in

anticipation of future developments we shall introel a Nave-Hill “capture fractiony
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to represent the fraction of the conventionallyeaited dos®e, from Equation (11)

that remains in the crystal and contributes td‘the” dose Diesg that is relevant to
resolution-degrading chemical transformations. |Baye crystals in ~1 A X-ray beams,
we assert thaff; = 1, and in our highly symmetric case of a unifdream and a
spherical crystal in a vacuum, this correction ealy depend on the radius of the crystal
R and the X-ray photon energhi). Although an exact expression cannot be derated
this time, a rough estimate qfifis useful for detecting when a crystal has reachede
where the Nave-Hill effect may have a significanpact. Since photoelectrons are
preferentially emitted in a direction normal to theident beam and deposit energy
more-or-less evenly along their track, it is assdiinere that the rough effect of
photoelectron escape will be to enlarge the volorex which the dose is deposited in a

single direction, and thereby reduce the dosedatistal by a fraction:

where:

Eon - photon energy (eV/photon)
R - radius of the spherical crystal (m)
Rre(E) - range of photoelectron of eneryderived by Cole (1969) (m)

Note that, for simplicity, the K-shell energy otthtom that emits the photoelectron has
not been deducted from the photon energy beforlyiagpt to Cole’s formula, nor have
Compton electrons been considered, but thesekalg hot to be the largest source of
error in Equation (12). It must be stressed thiatéquation is a very rough estimate

only, and could easily be off by a factor of twonoore aR << Rpg. However, it is
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instructive to show thakf; is expected to reduce the dose roughly as thepiinser ofR
onceR becomes less thaRpe.

To demonstrate the potential variability gf talculations, we conducted MCNP
(Hendrickset al, 2000) simulations of a sphere with radRjghe density and atomic
composition of a protein crystal given in 82.5, d@hdninated in a vacuum by X-rays of
various energies. The resulting minimum crysta¢siare plotted against those obtained
using Equation (12) in Fig. 2. Note that certaam@usions such as the optimum photon
energy to use clearly depend on hqwik calculated. The MCNP calculation is
probably more reliable than the simplistic modeEgpuation (12), but the caveats

mentioned above have yet to be addressed.

2.11 Radiation damage

The radiochemical mechanism behind the fadingféadtion spots is not
presently clear (Garman & Nave, 2009), but the egctian to dose has been calibrated
experimentally. Specifically, it was pointed oytHolton (2009) and Howellst al.

(2009) that the general trend reported by Howetllal. (2009), namelyD;,~ 10d MGy
where d is the feature size in A is remarkably @iest with the subsequent observations
of both Oweret al. (2006) and Kmetket al.(2006) (see Fig. 3) if the average spot

intensity at a given resolution fades exponentially

@) (1)=(1)y exr{—ln(z)ﬁf_eaoJ

where:
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0 - average spot intensity (photons/spot) after diisg a dosé®,es

(Dnp - average spot intensity (photons/spot) expeictélale absence of radiation
damage

In(2) - natural log of two (~0.7)

Dreso - deposited dose that is relevant to spot fadinGy/s)

H - Howellset al.(2009) criterion (10 MGy/A)

d - d-spacing in A

Note that here we us.s, because it was defined in the last section as the
resolution-degrading dose, but for currently aldéaspot-fading data this is the same as
Den from Equation (11) (fy = 1). We use angle brackéjdo emphasize that Equation
(13) describes the decay of average spot inteasgygiven d-spacing, as opposed to the
decay of any particular spot. Realistically, indival spots may follow different paths of
decay that are not necessarily exponential (Blakh8lips, 1962; Banumattat al,

2004), but in this work we are only interestedha aiverage spot intensity in a given
resolution bin, and the argument for Equation ($3)ased largely upon spot-fading
measurements.

The meta-analysis of Howelét al. (2009) did not include the observations made
by Owenet al.(2006) nor Kmetkeet al.(2006), but we reproduce in Fig. 3 the
observations presented in those works, superimpmsguedictions made by our
radiation damage model (H model) and the dose-digperB factor model (B model)
suggested by Kmetket al. (2006). We selected the PDB entries 2clu and 48
representative of apoferritin and lysozyme (respelyt) because 2clu claims a similar
resolution limit to that observed in Owenal. (2006) and 11z8 is the entry for lysozyme

reported by Kmetket al.(2006). It should be noted that the same valué (0
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MGy/A) was used for all “H model” curves in FigaBd this was not “fitted” to the
plotted data points in any way, so the agreememtdan all observations and the “H
model” predictions (solid lines) is quite remarkabln fact, the “H model” predictions in
Fig. 3B were intentionally offset to pass throulgh origin so that the “H model” lines
would not obscure the least-squares fitted lingt@f'B model”. In this work, we use
the “H model” because it is in best agreement Wwath these studies as well as 20 other
radiation damage experiments surveyed by Hovetli. (2009).

However, spot-fading experiments measure the saots sver and over again
and we are interested in the total accumulateasitte(l)p,. at the “damage limit"Tp,),
S0 we must integrate Equation (13) over time. Titisgral is performed in Appendix C
supplemental, where we show that integrating owesgonential decay is equivalent to
accumulating a non-decaying intensity for less tiame applying the proportionality

constant gives:

a9 (). =<|>ND 01 fyecayead HAARp
tos 3 ln(Z) fNH hc Ibeam(l_Tsphere(o’luen’R))
where:
()o. - average damage-limited intensity (photons/sab8 given resolution
(I)no - average spot intensity (photons/spot) expectalle absence of radiation
damage
tos - exposure time for the data set (seconds)
0.1 - converting. from A to m,p from g/cnt to kg/nT and MGy to Gy

faecayed - fractional progress toward completely faded s@dtend of data set

H - Howells’s criterion (10 MGy/A)

d - resolution of interest (A)

y) - X-ray wavelength (A)

R - radius of the spherical crystal (m)
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p - density of crystal (~1.2 g/cin

fun - the Nave-Hill dose capture fraction
h - Planck’s constant (6.626 x 1bJs)
C - speed of light (299792458 m/s)

lbeam - incident beam intensity (photons/$jm

Uen - mass energy-absorption coefficient of sphereeradt(m)

Note that the “damage limit” was defined in Appen@i, supplemental as the point when
spot intensity has decayed by some fractigR4fky of the initial “undamaged” value.
For example Owesnt al.(2006) recommended ending the data collection vthen
average spot intensity fades to ~ 0.7 of the und@ahaalue (fecayes= 0.3), but the level
of concern over radiation damage for a particutajget may inspire some investigators
to exceed this limit, or set a more conservative @tolton, 2009).

The value ofI)np is simply the average value of spot intensityigsrgby
Equation (1), and computing this average was actishgal by replacing the terms in
Equation (1) that vary from spot to spot with thearerage values and also substituting

wett from Equation (10) to convert spot intensitie®interged hkl intensities:

(15)

<I>ND — 2thal 4nSymOD A 2
tDS _lbeanre vV E or V <Lp>f0bsmm|: >

cell cell

We may now substituté)np /tps from Equation (15) into Equation (14) and then
replace(LP)fobs (F2), Veen and Ve With their expanded forms from Equations (6), (9),

(7), and 4/3R°, respectively, to yield the fully-qualified expsésn for damage-limited

spot intensity:

33



(16)

<|> = 2—-,-[105"62 fdecayeam:e‘l/14 0.5/H TSPhe'e( 20 ,,u,R) (3+ 00546) < fa2> exp - ZB(ﬁjz
P9 he fu,nueM,V, 2 IN@)sind [1-T, 0 dOmewR)  si (M)

where:
(DpL - average damage-limited intensity (photons/nkB given resolution

10° - convertingR from pm to m,re from m to A,p from g/cnt to kg/nt and MGy to

Gy

le - classical electron radius (2.818 x*2@n/electron)

h - Planck’s constant (6.626 x 1bs)

c - speed of light (299792458 m/s)

faecayed - fractional progress toward completely faded s@atend of data set
p - density of crystal (~1.2 g/cin

R - radius of the spherical crystainq)

y) - X-ray wavelength (A)

fuw - the Nave & Hill (2005) dose capture fractionfdt large crystals)

Nasu - humber of proteins in the asymmetric unit

M; - molecular weight of the protein (Daltons or glino
Vum - Matthews's coefficient (~2.4 #Dalton)

H - Howells’s criterion (10 MGy/A)

0 - Bragg angle

{f£) - number-averaged squared structure factor per pratem (electrof)

(Ma) - number-averaged atomic weight of a protein atevhl Daltons)

B - average (Wilson) temperature factof)A
U - attenuation coefficient of sphere material‘jm
en - mass energy-absorption coefficient of sphereenadt(m")

Note that the incident beam intensity.{.) is missing from this equation because spot
intensity was integrated out to the “damage limitiere the average spot has decayed by

a given fraction (ecayed. Note also that the crystal symmetry is missasthensymop
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term from Equation (10) was cancelled by anothgsopterm in the expression for the
average structure factor (Equation (7)), implyihgttthe damage limit is more closely
related to the number of molecules in the crystahtit is to the number of unit cells.
OneRin theR* term is effectively cancelled by the (1-T) term &l but the very largest

protein crystals and oreterm is roughly cancelled (within ~30% betweemd &7 keV)
by the{LP)f,psfactor.

Although Equation (16) may appear somewhat intitmdg it is both instructive

and useful to examine it in this expanded fornthaseases the incorporation of different

macromolecule types, radiation damage models arstatrshapes. For examp{ga?),

(Mg, 1 anduen, may be replaced with appropriate values for nu@eids. The In(2) term

arises from the definition dfl as the dose required to reduce spot intensitiagaten d-
spacing d = 0.5V/sind) by half, soHd and In(2) are grouped together. Crystals that are
more sensitive than normal to radiation damageupérof dose, such as reported for
dodecin by Murraet al.(2005), may be represented by using a smalleewaiitl, and a
more sophisticated resolution-dependent damage Imadbt replaceHd/In(2) with an
arbitrary functiorH(d). Also, considering the crystal to be a cube witige R instead

of a sphere of radiuR simply changes the leadingr® term to unity and replacespfere
with exp(zen2R). The increased scattering power of the cube siseause @° is
roughly twice 4/3R® and the damage-limited intensity (photons/hkl)esdinearly with

crystal volume.
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3. Results and Discussion

We are now prepared to calculate the diametereo$ithallest protein crystal that
can be expected to produce a complete data set inlea diffractometer: a very large
perfect detector, perfect shutter and spindle witiniform and flicker-free X-ray beam
bathing a spherical protein crystal in a vacuurhe Moise from such a machine is
dominated by photon counting, so if we requiregaal-to-noise ratio§NR of 2.0 in the
outer resolution bin of say 2 A, then the averagerthis bin must accumulate at least
four photonsi{a=1/71). If there are other sources of noise, such akdsaund
scattering, then more than four photons will beunesgl, but since it is theoretically
possible to reduce background to a negligible I¢set §3.2), we will begin with this

limiting case.

3.1 Zero-background case

We begin by neglecting the Nave-Hill effect be@iidhas yet to be measured
and represents the greatest unknown in the doselaabn. With f4 = 1 Equation (16)
predicts that a 1.2gm diameter sphere of perfect lysozyme crydat O; M, = 14300
Da;Vy=2.0 /3?/Da) in a beam of 1 A X-rays will scatter an averad four photons per
hkl ({I)pL) at 2 A resolution before the radiation damagetlisweached (kcayed= 0.3).
This limit is independent of exposure time or bdam since the total accumulated
fluence (photons/area) is dictated by the damangi. li

If we now involve { from Equation (12) or from MCNP simulations, thtée 4-
photon lysozyme crystal size shrinks to @b or 0.34um, respectively. In addition to

this, if we allow the spots to fade away complet@ycayes= 1) then 0.81m (fun = 1),
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0.28um (Equation (12)) or 0.18m (MCNP) crystals will yield 4 photons/hkl at 2 A.
There are a number of reasons why complete decat s realistic damage limit, not the
least of which is the biological relevance of theults (Oweret al, 2006), but it is
instructive to consider an infinite exposure tineeehbecause photon counting is the only
kind of noise that is theoretically impossible tionenate.

Immediately, the next questions to ask are howlthiit is influenced by the
choice of photon energy, desired resolution, thgreke of disorder in the crystal, the
molecular weight of the protein, or combinationsréof. Equation (16) is the exact
formula for relating all these quantities togethmrt as the questions to be asked occupy
a large multidimensional parameter space, it isucsve to graph the influence of each
parameter separately. Since many of the variablEgjuation (16) change with the
X-ray wavelength, we begin by plotting the minimargstal size against photon energy
in Fig. 2. This graph is similar to th&=* quantity obtained by Arndt (1984), except that
here they axis is on an absolute scale. The energy deperdsmemarkably flat, and

this result is consistent with experimental obseova(Gonzalezt al, 1994). The
“spike” in crystal size at very low photon energydue to a sharp upswing{ibP) when

the relp grazes the back of the Ewald sphere gfstré f,s drops to zero, and the 2 A
curves stop at 3.1 keV because it is not possibteliect 2 A data with wavelengths
longer than 4 A. The minimum-size curve for 4 mmsthkl at 3.5 A from a perfect
crystal of a 100 kDa protein is provided to fillglhow energy gap as well as demonstrate
how simultaneously decreasing the scattering p@andriowering the desired data quality

can “coincidentally” result in the same crystalesiequirement.
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Graphs of minimum crystal size against moleculaigit (Fig. 4)Nasu, faecayed H
and absorption coefficients are all very similacdgse each of these terms scales linearly
with crystal volume. An examination of Equatiob)teveals that these variables are not
strongly coupled to any othersRf<< %, as absorption is proportional Rand
attenuation negligible in this case. The solvamtentVy dependence is also not
graphed because this is just a plot of a squartefuaotion passing through 1én for
Vv =2.0A~Dar=1A,d=2AandB =0.

The graph of minimum crystal size against desieswlution may curve upward
or downward depending on the value chosen for tiedW B factor (dashed lines in Fig.
5) and indeed it is not surprising that the de@fedisorder in a protein crystal has a
strong influence on the diffraction limit. Whatsarprising is that if the B factor is
always selected to follow the empirically-derivedrhula 8 = 4d*+12) presented by
Holton (2009), one obtains the straight solid limeEig. 5. This remarkable result
appears to be due to an effect similar to thatrdesd by Guinieet al. (1955), except in
this case it is the “radius of gyration” of the imdual atoms that determines the slope of
the lines in Fig. 5. That is, if the number of frts required to detect the weakest spots
is relatively fixed from crystal to crystal, themetWilson B factor that “linearizes”
Equation (16) against resolution is giveniy 4d*+12. Regardless of the origins, Fig. 5
immediately suggests an empirical formula for thguired crystal size given an observed

resolution limit.

(17) 2rR=00113/(1), M, ex;{%‘)

where:
2R - required diameter of the crystaht)
0.011 - a scale factor assumivig = 2.4 A/Da
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(DpL - desired damage-limited intensity (photons/hki given resolution

M; - molecular weight of the protein (Daltons or gljno
4.74 - &*r? wherer, is the radius of gyration of a protein atom (A)
d - resolution of interest (A)

This is not to say that a crystal of diametBn@ll diffract to resolutiond, but rather that
a crystal of a protein with mad4 found to diffract to resolutiod probably has a Wilson

B factor that will require the crystal to be of ghater R to yield a complete data set.
Until now, we have assumed that an outer resolutior1)p, ) need only gather 4
photons/hkl, but it appears that the “detectiontlimf current technology is much higher
than this (described in the next section), andlaevaf(l)p_ = 100 to 200 photons/hkl is

suggested for practical use of Equation (17), démgnon the background level.

3.2 Background scattering

X-ray background consists of scattering from agerture walls, fluorescence,
disorder in the crystal, and potentially many otbaurces. A full theoretical treatment of
background and all the other possible sources igkrin a diffraction experiment are
well beyond the scope of this work, but we shakfty describe here how the large gap
between our calculated absolute minimum crysta aimd those that have been
determined experimentally is completely explaingdackground scattering alone.

A summary of experimental minimum crystal size deieations was provided
by Holton (2009), who related scattering power atadquality with an empirical

“difficulty parameter” (o) that increases with the quality of data neededdaccess”
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and decreases as instrument capabilities imprdhe. "record” for obtaining a complete
data set wang = 3.1, but entering the parameters obtained ina$tesection into
Equation (3) of Holton (2009 = 1 (number of crystals used)= 2.0 A (resolution
limit), B =0,Vy = 2.0 A/Da andty, = 1.2um (crystal “size”) we obtaing = 0.2. This
is a factor of 15 improvement over the “record"darsingt,,, = 0.34um, as expected
from the more optimistic photoelectron escape maoaelarrive ahy = 0.0044, which is
700 fold less scattering power than has ever beed to collect a complete data set.
There are many possible reasons why extant beasniiag not have reached the
theoretical limit, but what is clear is that monan four photons are presently required to
detect the faintest spots. Indeed,the 3.1 case corresponds to 64 photons/hkl (if the
cubic crystal volume in (Holton, 2009) is takerb®V,, here). Formally, this must be
due to additional noise inflating(l) beyond simply/I, requiring increaset
(photons/hkl) to bring/o(l) back up to 2.0. An obvious source of additiama@ike is

background scattering, so we now generalize oundida for the average signal-to-noise

ratio (SNR in the outer resolution bin from simpl1)p, to:

(18) SNR- ey

images
where:

(DpL - average damage-limited intensity (photons/hkl)

m - mean multiplicity (spots/hkl, counting partias distinct spots)
Nix - humber of pixels involved in the average spot
Isc - average background scattering rate (photond/p)xa the resolution of interest

ToL - damage-limited exposure time of the data seofses)

Nimages - NUMber of diffraction images in the data set
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Oother - FOOt-mean-square of all other sources of n@tcéd on a 1-photon scale)

For a given camera and sample the observed baakdjmhotons/pixel on a single
diffraction image will be proportional to the penage exposure timémage=

Tou/Nimagey, indicating howlgg is fixed for a given experiment. Since we arestdering
a damage-limited experiment, the total number ckgeound photons that fall on the
detector [gcTpL) Is also fixed, regardless of how these photoadanded into images.
The practice of “fine slicing” (Pflugrath, 1999)d@ces gctimage at the expense of
increasingm, but in the limit of “infinite” fine slicing the gantity mlgctimage@pproaches a
constant because the background that actuallyifdighe 3D integration region of a
given spot cannot be avoided by finer slicing. yime slicing will start to make other
sources of noise important, such as detector readaise, so this and all other sources
of noise are lumped intayher for completeness. Nevertheless, with our hypathkt

ideal diffractometetqer Will be negligible.

Choosing some reasonable parametars:4, n,x = 5x5, Equation (18) is solved
for SNR= 2.0 andl)p, = 64 photons/hkl b¥sctimage= 10 photons/pixel. It must be

stressed that this is a very rough approximatianjgqularly sincenp was not claimed to
be accurate to better than a factor of two and smcbrror propagated through Equation
(18) becomes a factor of four in background lewévertheless, thigglimageis exactly
that observed near the faintest spots shown indrad.(Moukhametzianoet al, 2008),
the source of ouny = 3.1 “record”, (that detector registers 1.0 pikestels per photon and

has a “zero” offset of 20 pixel levels).

41



The experience of the authors of this work is fttaphotons/pixel is on the low
side of the range of background levels seen orc#ypiiffraction images. Itis more
common to see hundreds of photons/pixel from clyskeat only diffract to modest
resolutions because the same disorder that leddsitespots also produces diffuse
scattering (James, 1962; Welberry, 2004). If wepkgix = 5x5 andn = 4 as above, and
lectimage = 25, 100 or even 400 photons/pixel, then satigffiNR= 2 in Equation (18)

requires|)p. to be 102, 202 or 402 photons/hkl, respectively.

Note that reducing the multiplicityr) by collecting the bare minimum number of
images will result in no net “gain” so long as ttemage limit is reached at the end of
data collection because the increased exposurepimignage will increasksctimage to
exactly compensate any reduced multiplicity.( On the other hand, considerable gains
can be had by making absolute background coun&d/pi§sc) lower, reducing the
number of pixels occupied by spots on the detgcigd, or both.

Background scattering can never be completelyieétad, but the noise it adds
to the spots can be minimized by making the spat wery small. A detailed discussion
of spot size is beyond the scope of this work theaoretically, very small spots can be
achieved with a perfect protein crystal (no mosaiead), a near-zero emittance beam of
very short wavelength X-rays focused on an enornamigsnoiseless detector with no
point-spread function, very small pixels and vengfrotation steps. Therefolg; can

be reduced to near zero, or at least to the pdietrethe noise from background is
insignificant {I)pL >>m nyix |G timagein Equation (18)), implying that Equation (16) kit
()pL set to 4 photons/hkl represents an absolute ardhfuental limit. That is, unless

some way is found to change one of the parametdeguation (16), such as increasing
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H by mitigating the chemistry of global damage oerdasing {y with photoelectron

escape, a lysozyme crystal smaller thanuim2will never yield a complete data set to

2 A

3.3 Implications for micro-focus beams

The 1.2um size limit for perfect lysozyme crystals deteredrhere does not
imply that crystals and X-ray beams smaller thammilare useless. If a complete data
set cannot be had from one crystal then a mulstatystrategy such as that used by
Kendrew (1960; Dickersoet al, 1961), a “needle scanning” strategy (Moukhametaia
et al, 2008) or perhaps the “serial crystallography”rapgh proposed by Starodabal.
(2008) may be employed, but the total scatteringme will have to add up to the
volume of a sphere given IR/in Equation (16) usingf; for the individual crystal size.

For example, the volume needed for one crystalldiGacrystal data set with final
merged1)p. = 4 photon/hkl is given by usidd)p,. = 0.04 photon/hkl in Equation (16).

Crystals with larger unit cells or more disorder lfoth) will have to be bigger
than their “perfect lysozyme equivalent” volumeor Example, a lysozyme crystal with a
more realistic Wilson B factor of 20 must be gr@ wide to produce 4 photons/hkl in the
2 A bin using thedcayes= 0.3 damage limit, and a 10 MDa asymmetric urith Wy =
2.4 A’Da and B = 61 must form a crystal {l& wide to produce 4 photons/hkl at 3.5 A.
But, as the present “detection limit” appears tmbehe order of 100 photons/hkl
(Isctimage ~100 photons/pixel), these realistic lysozyme tedgswill have to be 8.8m in
diameter for 2 A data, and 3.5 A data from the IDaWtase will require 48m crystals,

limiting the usefulness of X-ray beams smaller ttas.
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4. Conclusions

The minimum useful protein crystal size is limiteglthe background photons
that accumulate in the detector pixels occupied bpot, and current technologies seem
to require on the order of 100 photons/hkl (aftergmg) to attain a signal-to-noise ratio
of 2. The choice of X-ray wavelength appears teehanly a minor impact on the
damage-limited scattering power of a crystal, whiemains proportional to crystal
volume and inversely proportional to both the molacweight of the asymmetric unit
and the square of Matthews’s (1968) coefficientdibpractical purposes. The resolution
dependence is complicated by the Wilson B factor rélatingB to d-spacing
empirically revealed that damage-limited scattepoger is proportional to exp(-14d}/
whered is the d-spacing of interest. Dose reductiontdyghotoelectron escape appears
theoretically promising but difficult to predicthd the current detection limit for spots
will have to be overcome for this effect to be cdgdical use for typical single-crystal

data sets at accessible photon energies.

Appendix A: Data completeness

The fraction of relps in a given constant-resolutsphere that are lost in the blind
region lie in two polar caps intersecting the rotatxis ¢). That is, as the resolution
sphere spins, the border between relps on itscutfaat will intersect the Ewald sphere

twice per revolution and relps that will never nstect it is a circle of relps that “graze”
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the Ewald sphere at just one point. It is illust&to consider moving the relp circle in
Fig. 1 up and down theaxis. At this grazing point, Bragg’'s Law:

(Al) A=2dsind

is satisfied, and so the heigh) ©f this circle above the= 0 plane must be the radius of
the Ewald spherg* times the sin of the take-off angle of the syist)(

(A2) h=i*sin2

Now, the area in either of the blind regions i®et®n of the surface of a sphere that is
cut off by a plane at = th. This shape is known as a spherical cap, andréeeof a
spherical cap from a sphere of radiubat was cut at heightis given by:

(A3) Acp=2x1 (-h)

Now, there are two such caps, and we are inter@stiheé area left over after they are cut

off (observable relps) relative to the originalad the sphere:

(Ad) f.o= 4rr® = 22ar(r-h)) _r=(r=h) _h
r r

b
o 4y ?

Since a sphere of relps with constant d-spacifigs‘has radius o = d*, we may
substituter = d* and Equation (A2) into Equation (A4):

.
a5) =4SN0 _d, i gcos

obs d*

~

Substituting in Equation (A1) fox:

(AB) f,. =

obs — 2sind cosd = cosy
2dsiné
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Appendix B: Average Lorentz-polarization factor

Taking the product of Equations (2a) and (3) frtwa text and, for the moment,

simplifying Equation (3) by considering the casenfunpolarized bean§ = 0), we

have:

(B1) LP= 1+cos 2

2\sin’ 20 -
Assuming the X-ray beam is perpendicular to thatroh axis the polar coordinaias
simply the height of the relp circle pictured igFlL above the = 0 plane if the length of
the relp vector is normalized to unit wavelengltat is, if we define the angie

between the relp vector and the 0 plane, we have:

_ A sink

sink = =2 sind sink

(B2) (=4|d*

The anglec is 0° when the relp circle lies exactly in the 0 plane, and it is 90° when
the relp lies perfectly along tlzeaxis and the relp circle has vanished. Note that
Equation (B1) is undefined at this position, andare must be taken when approaching
this singularity. The value @ffor which the relp circle just grazes the Ewaltexe at
one point is when the denominator of (B1) beconege,zor:

(B3) sin20={ =2 sind sink or sink =cosd

Since we wish to avoid the singularity here, wdlse our limit of integration at a small
value short of it and use the symhpdbecause it is reminiscent of mosaic spread.

(B4) «,,, =arcsi{cost) -7

Substituting B2 into B1 we obtain:
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_ 1+cos 26 _ 1+cos 26
2\sin? 20 - 4sin? 0 sin®x  4sindycoL - sin®x

(B5) LP

Computing the average valueld? for all spots at a fixed resolution is
equivalent to integratingP over the accessible surface of the constant-résnlaphere,

and then dividing by the accessible surface area:

blind

jLPdA
(BG) <LP> — equator

blind
[ da
equator
The denominator of (B6) was solved as Equation (A6Y is simply half of the

accessible surface area of the constant-resolgpibare, which has radia&l or 2sir9

and accessible fractiogyf = co9:

blind
B7) [ dA=2z(2sin6) cosy

equator
Now, all the points that lie on or very near thip r@rcle pictured in Fig. 1 will have the
samelL andP factors, so we must “weight” tHeP of each contact point on the Ewald
sphere surface by the circumference of the relgecirThat is, we define the area element
in Equation (B6) with a re-casting of Equation (A@)ere we can compute the area of
the constant-resolution sphere above the relpecircFig. 1 by substituting the radius of
this spherei(d = 2sir9) for “r” and { from Equation (B2) forH”:
(B8) A, =2x(2sin0)(2sind - 2sindsinx) = 8rsin’ 0 - 8msin’ 0 sinx
Differentiating with respect te, we obtain the area element:

(B9) dA=-8rsin’d cosk dx

Substituting (B5), (B7) and (B9) into (B6) we have:
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e 1+cos 20

_ o 4sin6cog 6 - sin’«
27(2sindY cosd

(—877: sin® 4 COSK) die

(B10a)(LP)

(BLOb) (LP) = - 1+cos 20 cosk e

4 sinfcost 3 \Jcod O - sin’x

We now employ the indefinite integral:

COK : Sin’k+/C —sin’k
(B11) J-—dK =-arcta A
VJC -sin’k sin“k -=C

And substitute this into the definite integral:

(B12)

e cosx de = —arctar{ (cog 0 -p}cog 6 (cog 6 - ’7)} +arcta { (O cog 6 - (O)J

K,

Y \coZH — sin*k (cog0-7)-cog o (0)-cog 6

(B13) T coS« drx = —arcta M
5 ol — sink n

Clearly, as we approach the limit:

(B14) lim cOSK de=—~

n-0 ! Jcog 0 - sin*k 2

Substituting this back into Equation (B10b) we atothe averagéP factor:

(6a) <|_|:)>:£1-_|_C05220:z 1 _sin2g
8 sinfcos? 2\ sin20 2

Multiplying (LP) by f,ps= cO09), we obtain:

_m1+cos 20 _ x(3+cos4d)
8 sing 16sind

(6b) (LP)f
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This result was validated numerically by calculgtéhscrete spot positionk,andP for
hypothetical data sets using randomized wavelengthiscells and crystal orientations
and then dividing the predictions into resolutionsband averaging the value of the
productLP and the fraction of all possible relps that appéan the bin (not shown).
These simulations were repeated using the fullesgion for the polarization factor with

different values for the degree of polarizati@, but the numerical results were identical
to § = 0 (not shown), and we saw no need to repeatdheation using the full

polarization factor expression.

Appendix C: Spot-fading integral

Here we assume that the average spot intensitydpsispot) at a given resolution fades
exponentially, but begin with a slightly differergfpresentation of Equation (13) from the

text:

€y Ht)=0)0) ex;{—ln(Z)g—Rt]

where:

(iY(t) - average intensity rate (photons/spot/s) at tiadter absorbing a doaR -9
(i)(0) - average intensity rate (photons/spot/s) fesmundamaged crystal

In(2) - natural log of two (~0.7)

DR - dose deposited per unit time{sdt) or dose rate (MGy/s)

H - Howellset al.(2009) criterion (10 MGy/A)
d - d-spacing (A)
t - accumulated exposure time (seconds)
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Note the use of angle brackétto denote the average in a given resolution bin,
and that here we use the term “intensity rate’eferrto a spot intensity (photons/spot)
divided by the exposure time used to record itdeds). This is because accurate spot
fading experiments must record the decay curveabypsing the same spots over and
over again using per-observation exposure timdsatigashort relative to the damage
limit (Tp.). That is, the sampling time must be short enagthat the spot does not
decay appreciably during a given sample and théoplséspot per unit time (intensity
rate) is constant. So, effectively, spot fadingeskments measure changes in intensity
rate. Here we use a lower casktd differentiate an intensity rate (photons/sppffom
an integrated spot intensity (photons/spot), whvehwill continue to denote with a
capital 17, and also replace the doBgs, with DRxt so thatDR represents the time-
invariant factors of dose in Equation (11). Sibde, d, H and(i)(0) do not change with

time, the integral of Equation (C1) is simply tineigral of an exponential decay:

©2) (1), = [(H) dt=<i>(0)%{{exp(0)-eﬂ{-%h]]

Where:

(hpL - accumulated spot intensity at the damage liphib{ons/spot)

Tp. - accumulated exposure time at the damage liradofsds)
DR - dose rate (MGy/s)

H - Howellset al.(2009) criterion (10 MGy/A)

d - d-spacing in A
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Since we are not considering the accumulation okggaound countslp, could be
chosen to be infinity anfl)p. would then truly account for every last photort thél fall
into a spot before it fades away completely, byirerctice the damage limit is usually
declared at a point whe(g(Tp.) is not zero, as discussed in §2.11. To accamnt f
potentially variable damage limit criteria, we caefithe “decay fraction” at the end of

data collection as:

_ {0)(0)~(i)(Tor)
(©3) o™ 1

SinceTp. is now defined in terms ofidayed SUbStituting Equation (C3) into Equation

(C2) simplifies it to the expression:

Hd
decayedln(z) DR

€ (1) =)0

where:

(I)o. - average accumulated spot intensity (photonsyspiahe damage limit
(iy(0) - average intensity rate (photons/spot/s) fsnmundamaged crystal
DR - dose rate (MGy/s)

H - Howellset al.(2009) criterion (10 MGy/A)

d - d-spacing in A

Although it may appear thét)p. (photons/spot) depends on the dose 2, (the time
component o0DR (MGy/s) is actually cancelled by the time compdrarthe initial
intensity ratgi)(0) (photons/spot/s). Consider a hypothetical datkection strategy
where a very large number of observations are madach spot, and the whole data set
is actually a series of “mini” data sets with exjp@stimetps. As long adps is very small

when compared to the damage linTip(), the spot intensities (photons/spot) in the first
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“mini” data set (\p) will be “undamaged” and given by Darwin’s form{EBguation (1)).
The exactyp measured will be proportional tes, as can easily be seen by substituting

wess from Equation (10) into Equation (1):

an 3
(c5) Loy r2Vea lome A7) o
tDS VceII T cell
where:
Ino - spot intensity (photons/spot) from the first fiiidata set measured quickly

enough to have suffered no radiation damage effects

It is readily apparent that the quotiéqd/tps (photons/spot/s) is an intensity rate, as is the
average valué)\p/tps. Formally, the right hand side of Equation (GSindependent of
time, but as the reality of radiation damage preggs the santgs will record spot
intensities that fade (on average) according tet#tponential decay of Equation (C1).
Therefore, the starting value of this decay cusv&)ip/tbs, and we may substitute this

intensity rate foi)(0) in the above Equations:
©8) ()0)=1
tDS

Now the sum of all the equivalent observationalirthe mini data sets up to a given
accumulated exposure time is given by Equation,(@2]) even if a single data set were
collected with total exposure tinfg,_ the average number of photons that eventually
contribute to a spotl(p.) is simply the integral of the decay over time ({g&tjon (C4)).

We now substitutél )np/tps for (i)(0) in Equation (C4), as well &/t from
Equation (11) for the dose rateR), convert the photon energy into wavelenggtg, =
hc/i = J/photon), apply the Nave-Hill fractiog{ffrom Equation (12) and scale to

convenient units. We arrive at Equation (14) fribra main text:
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_<I>ND 01 fdecayed4H dll Rp
14) (1), = tos 3 IN(2) fr N € bearll~ Topned Ortten R))

Where:

(oL - maximum average spot intensity due to radiatiamage limits (photons/spot)
(Dnp - average spot intensity (photons/spot) obsergatjuan undamaged crystal and a
very short exposurepg

H - Howells’s criterion (10 MGy/A)

0.1 - converting. from A to m,p from g/cn? to kg/nt and MGy to Gy

y) - X-ray wavelength (A)

h - Planck’s constant (6.626 x 1bJs)

c - speed of light (299792458 m/s)

R - radius of the spherical crystal (m)

p - density of crystal (~1.2 g/cin

lbeam - incident beam intensity (photons/$jm

en - mass energy-absorption coefficient of sphereenadt(m)
faH - the Nave-Hill fraction
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Figure Legends:

Figure 1: Coordinate system

Thex axis is occupied by the X-ray beam and the spirmigtes the crystal (at the origin)
about thez axis. They axis is not shown as it is very nearly perpendictd the page.
The reciprocal lattice point (relp) of interestisscribed here by the circle it traces out as
the crystal is rotated. Note that it intersectsEuwald sphere twice, and that the
“penetration speed” is the component of the relglecity that is perpendicular to the
Ewald sphere surface. The ratio of the “penetnasizeed” to the actual “speed” is the
Lorentz factor. The diffracted ray passes throtighpoint of intersection, but evolves
from the center of the Ewald sphere (not the ol)gimhich is an unfortunate conceptual
flaw in Ewald’s construction. Nevertheless, thieetaff angle (2) obtained is the same
as that observed in real space. The angkesdk used in Equations (3) and Appendix C

(supplemental) are shown.

Figure 2: Wavelength dependence of the minimumiredicrystal size.

All plotted calculations usedy = 2.4 A/Da, WilsonB = 0 and 4 photons/hkl in the
indicated resolution bin. The crystal size requifer 2 A data from lysozyme and 3.5 A
data from a 100 kDa protein are essentially idahfas these cases balance scattering
power with data quality requirements. Solid lime=re calculated neglecting
photoelectron escape(f= 1), and dotted lines represent two different etedor

photoelectron loss: that given by Equation (12a6ge) and a full particle-tracking dose
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calculation with the program MCNP (blue). The ghiaaversal of the curves at low

energy is due to the onset of backscattering, wiere.orentz factor spikes.

Figure 3: Radiation damage model

The observations made by Owetnal.(2006) and Kmetket al.(2006) are
reproduced with permission from the original pulrdiss and plotted against predicted
curves derived from two alternative radiation dasmagdels. The “H model” is an
exponential decay of spot intensity with dose, @nred‘B model” is the dose-dependent B
factor model suggested by Kmetkbal.(2006). The “H model” predictions were made
by applying Equation 13 to intensities derived frtima observed structure factor file
deposited with the indicated PDB entry and thenmatimg the sum of all intensities
(panel A) followed by scaling the “simulated danfaigéensities to the “zero-dose”
intensities (panel B) using the procedure descriipemetkoet al.(2006). The “B
model” prediction curves (dotted lines) were pregasimilarly, except that the
“simulated damage” intensities were generated Ipyyam the relevant dose-dependent
B factor reported by Kmetket al. (2006).

All “H model” curves (solid lines) used the saméueaofH (10 MGy/A) and
therefore may explain the dissimilar “sensitivigrameter” observed by Kmetled al.
(2006) for apoferritin and lysozyme (orange ciraledblue squares, respectively). Itis
clear from panel A that the “B model” is at oddghathe observations of Owen al.
(2006) (green diamonds) although the same predintedsities are in very good
agreement with the data points from Kmeétal. (2006) (orange circles). Agreement

between these two studies is restored however dagept the “H model” where the
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resolution dependence of radiation damage is exgi@h@s opposed to a Gaussian (B

model).

Figure 4. Molecular weight dependence of the mimmrequired crystal size

All plotted calculations usedy = 2.4 £/Da, 1 A radiation, 2 A spots argi= 24.
Without photoelectron escape, the required crysikime is simply proportional to
molecular weight, and the two different models bbwelectron escape considered here
are shown to have significant, yet different eféefcir crystals smaller than a feun

wide, as this is the linear dimension of a phototeten track Rpg).

Figure 5: Resolution dependence of the minimumiredicrystal size

All plotted calculations usedy = 2.4, and 1 A radiation. The Wilson B factor
strongly affects the curvature of the required t&lysize for a given number of photons,
but applying the empirical formula shown serenadipdly simplifies this analysis, as

described in the text.
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Figure 2:

wavelength dependence
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normalized total intensity

Figure 3:

data taken from Owen et. al. 2006
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Figure 4:
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Figure 5:
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